Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish
نویسندگان
چکیده
BACKGROUND Anemia is a hematologic disorder with decreased number of erythrocytes. Erythropoiesis, the process by which red blood cells differentiate, are conserved in humans, mice and zebrafish. The only known agents available to treat pathological anemia are erythropoietin and its biologic derivatives. However, erythropoietin therapy elicits unwanted side-effects, high cost and intravenous or subcutaneous injection, warranting the development of a more cost effective and non-peptide alternative. Ginger (Zingiber officinale) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. METHODOLOGY/PRINCIPAL FINDINGS Here, we utilized gata1:dsRed transgenic zebrafish embryos to investigate the effect of ginger extract on hematopoiesis in vivo and we identified its bioactive component, 10-gingerol. We confirmed that ginger and 10-gingerol promote the expression of gata1 in erythroid cells and increase the expression of hematopoietic progenitor markers cmyb and scl. We also demonstrated that ginger and 10-gingerol can promote the hematopoietic recovery from acute hemolytic anemia in zebrafish, by quantifying the number of circulating erythroid cells in the dorsal aorta using video microscopy. We found that ginger and 10-gingerol treatment during gastrulation results in an increase of bmp2b and bmp7a expression, and their downstream effectors, gata2 and eve1. At later stages ginger and 10-gingerol can induce bmp2b/7a, cmyb, scl and lmo2 expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1. CONCLUSIONS/SIGNIFICANCE Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents.
منابع مشابه
The Integrator subunits function in hematopoiesis by modulating Smad/BMP signaling.
Hematopoiesis, the dynamic process of blood cell development, is regulated by the activity of the bone morphogenetic protein (BMP) signaling pathway and by many transcription factors. However, the molecules and mechanisms that regulate BMP/Smad signaling in hematopoiesis are largely unknown. Here, we show that the Integrator complex, an evolutionarily conserved group of proteins, functions in z...
متن کاملSmad1 and Smad5 differentially regulate embryonic hematopoiesis.
The bone morphogenetic protein (BMP) signaling pathway regulates multiple steps of hematopoiesis, mediated through receptor-regulated Smads, including Smad1 and Smad5. Here, we use loss-of-function approaches in zebrafish to compare the roles of Smad1 and Smad5 during embryonic hematopoiesis. We show that knockdown of Smad1 or Smad5 generates distinct and even opposite hematopoietic phenotypes....
متن کاملBmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we s...
متن کاملSpatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration.
In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located near the wound border. To identify regulators of cardiomyocyte proliferation, we used spatially resolved RNA sequencing (tomo-seq) and generated a high-resolution genome-wide atlas of gene expression in the regenerating zebrafish heart. Interestingly, we identified two wound border zones with...
متن کاملCdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish.
During angiogenesis in vivo, endothelial cells (ECs) at the tips of vascular sprouts actively extend filopodia that are filled with bundles of linear actin filaments. To date, signaling pathways involved in the formation of endothelial filopodia have been studied using in-vitro-cultured ECs that behave differently from those in vivo. Herein, we have delineated a signaling pathway that governs t...
متن کامل